科研成果
  成果统计  
  获奖
  论文
  专著
  专利
  新品种
  软件著作权
  成果转化  
  成果
  案例
  动态
  · 最新动态
  · 人才招聘
  · 专题
  ·
  · 学会学报
  · 信息服务
  您现在的位置:首页 > 科研成果 > 论文
 
论文编号:
作者:
作者: Lulu Yang, Jianjun Chen, Weiming Hu, Tianshun Yang, Yanjun Zhang, Tamura Yukiyoshi, Yanyang Zhou, Ying Wang*
作者所在部门:
作者所在部门:
通讯作者:
通讯作者: Ying Wang
刊物名称:
刊物名称: PLOS ONE
论文题目:
论文题目: Population Genetic Structure of Glycyrrhiza inflata B. (Fabaceae) Is Shaped by Habitat Fragmentation,Water Resources and Biological Characteristics
摘要:
摘要:

Background
Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species.

Results
We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata.

Conclusions
Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant.

年: 2016
卷:
期:
页: 164129
收录类别:
影响因子:
论文出处:
论文出处:
外单位作者单位:
外单位作者单位:
备注:

关闭窗口