科研成果
  成果统计  
  获奖
  论文
  专著
  专利
  新品种
  软件著作权
  成果转化  
  成果
  案例
  动态
  · 最新动态
  · 人才招聘
  · 专题
  ·
  · 学会学报
  · 信息服务
  您现在的位置:首页 > 科研成果 > 论文
 
论文编号:
作者:
作者: Qian Zhang,JunJun Wu,Yao Lei,Fan Yang,DanDan Zhang,KeRong Zhang,QuanFa Zhang*,XiaoLi Cheng*.
作者所在部门:
作者所在部门:
通讯作者:
通讯作者: QuanFa Zhang,XiaoLi Cheng
刊物名称:
刊物名称: Soil and Tillage Research
论文题目:
论文题目: Agricultural land use change impacts soil CO2 emission and its 13C-isotopic signature in central China
摘要:
摘要:

Land use change has been widely considered as a key driver of global carbon (C) dynamics. However, the impact of agricultural land use change on soil respiration and its 13C-isotopic signature of CO2 are not fully understood. Therefore, we conducted a field experiment to investigate the seasonal variation of soil CO2 flux and its 13C-isotopic signature and their relationships with biotic factors and abiotic factors under land use conversion from croplands to afforested land (woodland and shrubland) after 30 years. Measurement of CO2 flux was conducted once a month for a whole year. The results showed that the conversion cropland to afforested land significantly increased soil CO2 flux and lowered the δ13C of soil CO2. The soil CO2 flux showed similar seasonal patterns among land use types with the highest (994.87 mg m−2 h−1) in summer and the lowest (25.53 mg m−2 h−1) in winter. The soil CO2 flux was positively related to soil organic C and labile C of topsoil (0–10 cm), as well as soil temperature, whereas the δ13C of soil CO2 emission was positively correlated with the δ13C of microbial biomass and negatively correlated with soil temperature. Overall, our results reveal that subject to long-term land use change, soil CO2 fluxes significantly increase in afforested land due to improved availability of soil C, and its 13C-isotopic signature are strongly related to isotope signature of plant litter inputs.

年: 2018
卷: 177
期:
页: 105-112
收录类别:
影响因子:
论文出处:
论文出处:
外单位作者单位:
外单位作者单位:
备注:

关闭窗口