科研成果
  成果统计  
  获奖
  论文
  专著
  专利
  新品种
  软件著作权
  成果转化  
  成果
  案例
  动态
  · 最新动态
  · 人才招聘
  · 专题
  ·
  · 学会学报
  · 信息服务
  您现在的位置:首页 > 科研成果 > 论文
 
论文编号:
作者:
作者: JiaoFeng,XiaXu,JunjunWu,QianZhang,DandanZhang,QianxiLi,ChunyanLong,QiongChen,JingwenChen,XiaoliCheng*
作者所在部门:
作者所在部门:
通讯作者:
通讯作者: XiaoliCheng
刊物名称:
刊物名称: Science of The Total Environment
论文题目:
论文题目: Inhibited enzyme activities in soil macroaggregates contribute to enhanced soil carbon sequestration under afforestation in central China
摘要:
摘要:

The fate of soil organic carbon (SOC) sequestered by afforestation is crucial for the mitigation of the anthropogenic climate change but remains largely unclear. This lack of knowledge is particularly true for SOC turnover driven by enzyme activity. Here we  measured hydrolase (including β-glucosidase, α-glucosidase, cellobiohydrolase and xylanase) and oxidase (including polyphenol oxidase and peroxidase) activities in soil aggregates following 30-year afforestation in central China. We also analyzed the relationships of enzyme activities with SOC concentrations, soil C:nitrogen (N) ratios and δ13C values of soil organic pool (removing any carbonates by acid hydrolysis) and stable pool (NaOCl–resistant). Afforestation significantly enhanced soil β-glucosidase, α-glucosidase and xylanase activities in bulk soil, as well as SOC concentrations in bulk soil and all aggregate fractions compared to those in the open area and cropland. In particular, the woodland increased SOC concentration in >2000?μm macroaggregates by 4.2- and 3.2-fold, compared to the open area and cropland, respectively. Soil hydrolase activities were generally lower but SOC concentrations were higher in >2000?μm macroaggregates compared with those in other aggregate fractions following afforestation. Hydrolase activities were negatively correlated with SOC and C:N ratios in soil aggregate fractions following afforestation. Results of structural equation modeling indicated that the increasingly inhibited hydrolase activities with increasing soil aggregate size indirectly promoted SOC sequestration following afforestation. In addition, both hydrolase and oxidase were positively correlated with δ13C values in the stable pool of the afforested soils, confirming the essential role of enzymes for SOC turnover in soil aggregates following afforestation. Overall, our results highlight the importance of unevenly distributed enzyme activities among soil aggregates in regulating SOC sequestration following afforestation.

年: 2018
卷: 640-641
期:
页: 653-661
收录类别:
影响因子:
论文出处:
论文出处:
外单位作者单位:
外单位作者单位:
备注:

关闭窗口