科研成果
  成果统计  
  获奖
  论文
  专著
  专利
  新品种
  软件著作权
  成果转化  
  成果
  案例
  动态
  · 最新动态
  · 人才招聘
  · 专题
  ·
  · 学会学报
  · 信息服务
  您现在的位置:首页 > 科研成果 > 论文
 
论文编号:
作者:
作者: Yin, Dacong; Wang, Zhongjie; Wen, Xiaobin; Ding, Yi; Hou, Xiaoyu; Geng, Yahong; Li, Yeguang*.
作者所在部门:
作者所在部门:
通讯作者:
通讯作者: Li, Yeguang
刊物名称:
刊物名称: Environmental science and pollution research international
论文题目:
论文题目: Effects of carbon concentration, pH, and bubbling depth on carbon dioxide absorption ratio in microalgae medium.
摘要:
摘要:

The microalgae-based CO2 sequestration is considered to be an effective technique with great potential to cope with carbon emission. However, most researches are only focused on microalgae; the effects of physicochemical factors, which are carbon concentration, medium pH, and bubbling depth, on absorption and utilization of supplied CO2 in culture is less known. In order to understand and improve CO2 absorption in microalgae culture, the effects of these three factors were studied with different levels and combinations. Results revealed that when medium carbon concentration increased from 4.76 to 95.24 mmol/L, CO2 absorption ratio increased by about 12%, 10%, 12%, and 11% at medium depths of 10, 20, 40, and 80 cm, with the initial pH 10.6 to 9.7 by bubbling CO2, respectively. As bubbling depth increased from 10 to 80 cm, CO2 absorption ratio increased by about 25%, 22%, and 25% at carbon concentrations of 4.76, 9.52, and 95.24 mmol/L, with the initial pH 10.6 to 9.7 by bubbling CO2, respectively. In range of 10.6-7.0, pH had no significant effect on CO2 absorption ratio (P > 0.05) when carbon concentration is below 9.52 mmol/L, while above 9.52 mmol/L, pH had significant effect on CO2 absorption ratio (P < 0.05). It was found for the first time that the effect of pH on the CO2 absorption ratio was affected by carbon concentration. In addition, equilibrium pH, at which the CO2 partial pressure in the medium equals to that in the air, of medium with different carbon concentrations was also determined. Overall, in microalgae culture for CO2 sequestration, increasing CO2 bubbling depth and keeping higher carbon concentration and higher pH can improve CO2 absorption ratio, which will optimize the biofixation of CO2 by microalgae furthermore. 

年: 2019
卷:
期:
页: DOI:10.1007/s11356-019-06287-4
收录类别:
影响因子:
论文出处:
论文出处:
外单位作者单位:
外单位作者单位:
备注:

关闭窗口