科研成果
  成果统计  
  获奖
  论文
  专著
  专利
  新品种
  软件著作权
  成果转化  
  成果
  案例
  动态
  · 最新动态
  · 人才招聘
  · 专题
  ·
  · 学会学报
  · 信息服务
  您现在的位置:首页 > 科研成果 > 论文
 
论文编号:
作者:
作者: Qian Yiguang, Cao Liwen, Zhang Qiang, Amee Maurice, Chen Ke*, Chen Liang*
作者所在部门:
作者所在部门:
通讯作者:
通讯作者:
刊物名称:
刊物名称: BMC PLANT BIOLOGY
论文题目:
论文题目: SMRT and Illumina RNA sequencing reveal novel insights into the heat stress response and crosstalk with leaf senescence in tall fescue
摘要:
摘要:

BackgroundAs a cool-season grass species, tall fescue (Festuca arundinacea) is challenged by increasing temperatures. Heat acclimation or activation of leaf senescence, are two main strategies when tall fescue is exposed to heat stress (HS). However, lacking a genome sequence, the complexity of hexaploidy nature, and the short read of second-generation sequencing hinder a comprehensive understanding of the mechanism. This study aims to characterize the molecular mechanism of heat adaptation and heat-induced senescence at transcriptional and post-transcriptional levels.ResultsTranscriptome of heat-treated (1h and 72h) and senescent leaves of tall fescue were generated by combining single-molecular real-time and Illumina sequencing. In total, 4076; 6917, and 11,918 differentially expressed genes (DEGs) were induced by short- and long-term heat stress (HS), and senescence, respectively. Venn and bioinformatics analyses of DEGs showed that short-term HS strongly activated heat shock proteins (Hsps) and heat shock factors (Hsfs), as well as specifically activated FK506-binding proteins (FKBPs), calcium signaling genes, glutathione S-transferase genes, photosynthesis-related genes, and phytohormone signaling genes. By contrast, long-term HS shared most of DEGs with senescence, including the up-regulated chlorophyll catabolic genes, phytohormone synthesis/degradation genes, stress-related genes, and NACs, and the down-regulated photosynthesis-related genes, FKBPs, and catalases. Subsequently, transient overexpression in tobacco showed that FaHsfA2a (up-regulated specifically by short-term HS) reduced cell membrane damages caused by HS, but FaNAC029 and FaNAM-B1 (up-regulated by long-term HS and senescence) increased the damages. Besides, alternative splicing was widely observed in HS and senescence responsive genes, including Hsps, Hsfs, and phytohormone signaling/synthesis genes.ConclusionsThe short-term HS can stimulate gene responses and improve thermotolerance, but long-term HS is a damage and may accelerate leaf senescence. These results contribute to our understanding of the molecular mechanism underlying heat adaptation and heat-induced senescence.

年: 2020
卷: 20
期: 1
页: 366
收录类别:
影响因子: 3.497
论文出处:
论文出处:
外单位作者单位:
外单位作者单位:
备注:

关闭窗口