科研成果
  成果统计  
  获奖
  论文
  专著
  专利
  新品种
  软件著作权
  成果转化  
  成果
  案例
  动态
  · 最新动态
  · 人才招聘
  · 专题
  ·
  · 学会学报
  · 信息服务
  您现在的位置:首页 > 科研成果 > 论文
 
论文编号:
作者:
作者: Gang He, Xiaoliang Jiang, Lunguang Yao, Guihua Liu, Yuyi Yang*,Ying Jiang , Wenzhi Liu*
作者所在部门:
作者所在部门:
通讯作者:
通讯作者: Yuyi Yang*, Wenzhi Liu*
刊物名称:
刊物名称: CHEMOSPHERE
论文题目:
论文题目: Effects of tetracycline on nitrogen and carbon cycling rates and microbial abundance in sediments with and without biochar amendment
摘要:
摘要:

Nitrogen (N) and carbon (C) biogeochemical processes, such as denitrification and organic matter decomposition, are critical in determining ecological functions in aquatic environments. The overuse of antibiotics in human and veterinary medicine has resulted in the ubiquitous presence of these contaminants in lakes, rivers and other water bodies worldwide. However, the effects of antibiotic residues on N and C cycling processes and associated microbial communities are not well understood. Here, 44- day incubation experiments were conducted to examine the impact of tetracycline on nitrification, denitrification, and CO2 and CH4 emissions in sediments with and without biochar addition. Our results showed that tetracycline residues in sediments reached a maximum on the 5th day and then decreased gradually. Throughout incubation, there was no significant difference in sediment N and C cycling rates
between control and tetracycline alone treatment. However, the tetracycline t biochar treatment significantly enhanced sediment denitrification rate and the emission of CO2 and CH4. The abundance of N- and C-cycling genes and 16s rRNA gene was significantly reduced by tetracycline exposure only on the 5th day. Furthermore, the relative abundance of several antibiotic resistance genes (ARGs) and class 1 integron-integrase gene (intl1) in sediments was significantly increased after tetracycline exposure. Our findings suggest that, although non-therapeutic concentrations of tetracycline seems to have no adverse effect on sediment N and C cycling rates, the residual tetracycline can reduce sediment microbial abundance in short term and may promote the proliferation of ARGs in long term

年: 2021
卷: 207
期:
页: 129509
收录类别:
影响因子:
论文出处:
论文出处:
外单位作者单位:
外单位作者单位:
备注:

关闭窗口